

Understanding JavaScript Promises

Nicholas C. Zakas

This book is for sale at http://leanpub.com/understanding-javascript-promises

This version was published on 2022-02-19

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2020 - 2022 Nicholas C. Zakas

http://leanpub.com/understanding-javascript-promises
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Introduction . 1
About This Book . 1
Acknowledgments . 4
About the Author . 4
Disclaimer . 4

1. Promise Basics . 5
The Promise Lifecycle . 5
Creating New (Unsettled) Promises . 13
Creating Settled Promises . 16
Summary . 19

2. Chaining Promises . 21
Catching Errors . 22
Using finally() in Promise Chains . 24
Returning Values in Promise Chains . 28
Returning Promises in Promise Chains . 29
Summary . 35

3. Working with Multiple Promises . 36
The Promise.all() Method . 36
The Promise.allSettled() Method . 44
The Promise.any() Method . 50
The Promise.race() Method . 55
Summary . 58

4. Async Functions and Await Expressions . 59
Defining Async Functions . 59

CONTENTS

What Makes Async Functions Different . 60
Summary . 72

5. Unhandled Rejection Tracking . 74
Detecting Unhandled Rejections . 74
Web Browser Unhandled Rejection Tracking 75
Node.js Unhandled Rejection Tracking . 80
Summary . 84

Final Thoughts . 85
Download the Extras . 85
Support the Author . 85
Help and Support . 85
Follow the Author . 86

Introduction
One of the most powerful aspects of JavaScript is how easily it handles asynchronous
programming. As a language created for the web, JavaScript needed to respond to
user interactions such as clicks and key presses from the beginning, and so event
handlers such as onclickwere created. Event handlers allowed developers to specify
a function to execute at some later point in time in reaction to an event.

Node.js further popularized asynchronous programming in JavaScript by using
callback functions in addition to events. As more and more programs started
using asynchronous programming, events and callbacks were no longer sufficient
to support everything developers wanted to do. Promises are the solution to this
problem.

Promises are another option for asynchronous programming, and they work like
futures and deferreds do in other languages. A promise specifies some code to be
executed later (as with events and callbacks) and also explicitly indicates whether
the code succeeded or failed at its job. You can chain promises together based on
success or failure in ways that make your code easier to understand and debug.

About This Book

The goal of this book is to explain how JavaScript promises work while giving
practical examples of when to use them. All new asynchronous JavaScript APIs
will be built with promises going forward, and so promises are a central concept
to understanding JavaScript as a whole. My hope is that this book will give you the
information you need to successfully use promises in your projects.

Browser, Node.js, and Deno Compatibility

There are multiple JavaScript runtimes that you may use, such as web browsers,
Node.js, and Deno. This book doesn’t attempt to address differences between these

Introduction 2

JavaScript runtimes unless they are so different as to be confusing. In general, this
book focuses on promises as described in ECMA-262 and only talks about differences
in JavaScript runtimes when they are substantially different. As such, it’s possible
that your JavaScript runtime may not conform to the standards-based behavior
described in this book.

Who This Book Is for

This book is intended as a guide for those who are already familiar with JavaScript.
In particular, this book is aimed at intermediate-to-advanced JavaScript developers
who work in web browsers, Node.js, or Deno and who want to learn how promises
work.

This book is not for beginners who have never written JavaScript. You will need to
have a good, basic understanding of the language to make use of this book.

Overview

Each of this book’s five chapters covers a different aspect of JavaScript promises.
Many chapters cover promise APIs directly, and each chapter builds upon the
preceding chapters in a way that allows you to build up your knowledge gradually.
All chapters include code examples to help you learn new syntax and concepts.

Chapter 1: Promise Basics introduces the concept of promises, how they work, and
different ways to create and use them.

Chapter 2: Chaining Promises discusses the variousways to chainmultiple promises
together to make composing asynchronous operations easier.

Chapter 3: Working with Multiple Promises explains the built-in JavaScript
methods designed to monitor and respond to multiple promises executing in parallel.

Chapter 4: Async Functions and Await Expressions introduces the concepts of
async functions and await expressions, and explains how they relate to and use
promises.

Chapter 5: Unhandled Rejection Tracking explains how to properly track when
promises are rejected without a rejection handler.

Introduction 3

Conventions Used

The following typographical conventions are used in this book:

• Italics introduces new terms
• Constant width indicates a piece of code or filename

All JavaScript code examples are written as modules (also known as ECMAScript
modules or ESM).

Additionally, longer code examples are contained in constant width code blocks such
as:

1 function doSomething() {

2 // empty

3 }

Within a code block, comments to the right of a console.log() statement indicate
the output you’ll see in the browser or Node.js console when the code is executed.
For example:

1 console.log("Hi"); // "Hi"

If a line of code in a code block throws an error, this is also indicated to the right of
the code:

1 doSomething(); // error!

Help and Support

If you have questions as you read this book, please send a message to my mailing
list: books@humanwhocodes.com. Be sure to mention the title of this book in your
subject line.

Introduction 4

Acknowledgments

I’m grateful tomy father, Speros Zakas, for copyediting this book and for Rob Friesel’s
technical editing. You both have made this book much better than it was.

Thanks to everyone who reviewed early versions of this book and provided feedback:
Mike Sherov, David Hund, Murat Corlu, and Chris Ferdinandi.

About the Author

Nicholas C. Zakas is an independent software engineer, consultant, and coach. He
is the creator of the ESLint open source project and serves on the ESLint Technical
Steering Committee. Nicholas works with companies and individuals to improve
software engineering processes and helps technical leaders grow and succeed. He
has also authored or contributed to over a dozen books related to JavaScript and web
development. You can find Nicholas online at https://humanwhocodes.com and on
Twitter @slicknet.

Disclaimer

While the publisher and the author have used good faith effort to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

https://humanwhocodes.com
https://twitter.com/slicknet

1. Promise Basics
While promises are often associated with asynchronous operations, they are simply
placeholders for values. The value may already be known or, more commonly, the
value may be the result of an asynchronous operation. Instead of subscribing to an
event or passing a callback to a function, a function can return a promise, like this:

1 // fetch() promises to complete at some point in the future

2 const promise = fetch("books.json");

The fetch() function is a common utility function in JavaScript runtimes that makes
network requests. The call to fetch() doesn’t actually complete a network request
immediately; that will happen later. Instead, the function returns a promise object
(stored in the promise variable in this example, but you can name it whatever you
want) representing the asynchronous operation so you can work with it in the future.
Exactly when you’ll be able to work with that result depends entirely on how the
promise’s lifecycle plays out.

The Promise Lifecycle

Each promise goes through a short lifecycle starting in the pending state, which
indicates that promise hasn’t completed yet. A pending promise is considered
unsettled. The promise in the previous example is in the pending state as soon as the
fetch() function returns it. Once the promise completes, the promise is considered
settled and enters one of two possible states (see Figure 1-1):

1. Fulfilled: The promise has completed successfully.
2. Rejected: The promise didn’t complete successfully due to either an error or

some other cause.

1. Promise Basics 6

Figure 1-1: Promise states

An internal [[PromiseState]] property is set to "pending", "fulfilled", or
"rejected" to reflect the promise’s state. This property isn’t exposed on promise
objects, so you can’t determine which state the promise is in programmatically. But
you can take a specific action when a promise changes state by using the then()

method.

Assigning Handlers with then()

The then() method is present on all promises and takes two arguments. The first
argument is a function to call when the promise is fulfilled, called the fulfillment
handler. Any additional data related to the asynchronous operation is passed to this
function. The second argument is a function to call when the promise is rejected,
called the rejection handler. Similar to the fulfillment handler, the rejection handler
is passed any additional data related to the rejection.

Any object that implements the then() method in this way is called a
thenable. All promises are thenables, but not all thenables are promises.

Both arguments to then() are optional, so you can listen for any combination of
fulfillment and rejection. For example, consider this set of then() calls:

1. Promise Basics 7

1 const promise = fetch("books.json");

2

3 // add a fulfillment and rejection handler

4 promise.then(response => {

5 // fulfillment

6 console.log(response.status);

7 }, reason => {

8 // rejection

9 console.error(reason.message);

10 });

11

12 // add another fulfillment handler

13 promise.then(response => {

14 // fulfillment

15 console.log(response.statusText);

16 });

17

18 // add another rejection handler

19 promise.then(null, reason => {

20 // rejection

21 console.error(reason.message);

22 });

All three then() calls operate on the same promise. The first call assigns both a
fulfillment and a rejection handler. The second only assigns a fulfillment handler;
errors won’t be reported. The third just assigns a rejection handler and doesn’t report
success.

One quirk of the fetch() function is that the returned promise is fulfilled whenever
it receives an HTTP status, even 404 or 500. The promise is only rejected when the
network request fails for some reason. If you want to ensure that the status is in
the 200-299 range, you can check the response.ok property, as in this example:

1 const promise = fetch("books.json");

2

1. Promise Basics 8

3 promise.then(response => {

4 if (response.ok) {

5 console.log("Request succeeded.");

6 } else {

7 console.error("Request failed.");

8 }

9 });

Assigning Rejection Handlers with catch()

Promises also have a catch() method that behaves the same as then() when only a
rejection handler is passed. For example, the following catch() and then() calls are
functionally equivalent:

1 const promise = fetch("books.json");

2

3 promise.catch(reason => {

4 // rejection

5 console.error(reason.message);

6 });

7

8 // is the same as:

9

10 promise.then(null, reason => {

11 // rejection

12 console.error(reason.message);

13 });

The intent behind then() and catch() is for you to use them in combination to clearly
indicate how a result is handled. This system is better than events and callbacks
because it makes success or failure completely clear. (Events tend not to fire when
there’s an error, and in callbacks you must always remember to check the error
argument.) Just know that if you don’t attach a rejection handler to a promise that is

1. Promise Basics 9

rejected, then the JavaScript runtime will output a message to the console, or throw
an error, or both (depending on the runtime).

Assigning Settlement Handlers with finally()

To go along with then() and catch() there is also finally(). The callback passed
to finally() (called a settlement handler) is called regardless of success or failure.
Unlike the callbacks for then() and catch(), finally() callbacks do not receive
any arguments because it isn’t clear whether the promise was fulfilled or rejected.
Because the settlement handler is called both on fulfillment and rejection, it is similar
(but not the same; discussed further in Chapter 2) to passing the handler for both
fulfillment and rejection using then(). Here’s an example:

1 const promise = fetch("books.json");

2

3 promise.finally(() => {

4 // no way to know if fulfilled or rejected

5 console.log("Settled");

6 });

7

8 // is similar to:

9

10 const callback = () => {

11 console.log("Settled");

12 };

13

14 promise.then(callback, callback);

As long as you don’t access the argument passed to callback, the behavior between
these two examples is the same. However, as with catch(), using finally() makes
your intention clearer as compared to then().

Settlement handlers are useful when you want to know that an operation has
completed and you don’t care about the result. As an example, you may want to
display a loading indicator on a web page while a fetch() request is active and then
hide it when the request is complete. It doesn’t matter if the request was successful

1. Promise Basics 10

or not because the loading indicator should stop once the request is complete. You
might have code like this in your web application:

1 const appElement = document.getElementById("app");

2 const promise = fetch("books.json");

3

4 appElement.classList.add("loading");

5

6 promise.then(() => {

7 // handle success

8 });

9

10 promise.catch(() => {

11 // handle failure

12 });

13

14 promise.finally(() => {

15 appElement.classList.remove("loading");

16 });

Here, appElement represents the HTML element that wraps the entire application on
the page. A network request is initiated using fetch() and the CSS class "loading"
is added to the HTML element (allowing you to change any styles as appropriate).
When the network request completes, promise is settled and the settlement handler
removes the "loading" class from the HTML element to reset the application state.
You can still respond to success and failure using then() and catch()while finally()
solely handles the state change. Without finally(), you would need to remove the
"loading" class in both the fulfillment and rejection handlers.

The settlement handlers added with finally() do not prevent rejections
from outputting an error to the console or throwing an error. You must still
add a rejection handler to prevent the error from being thrown in that case.

1. Promise Basics 11

Assigning Handlers to Settled Promises

A fulfillment, rejection, or settlement handler will still be executed even if it is added
after the promise is already settled. This allows you to add new fulfillment and
rejection handlers at any time and guarantee that they will be called. For example:

1 const promise = fetch("books.json");

2

3 // original fulfillment handler

4 promise.then(response => {

5 console.log(response.status);

6

7 // now add another

8 promise.then(response => {

9 console.log(response.statusText);

10 });

11 });

In this code, the fulfillment handler adds another fulfillment handler to the same
promise. The promise is already fulfilled at this point, so the new fulfillment handler
is added to the microtask queue and called when ready. Rejection and settlement
handlers work the same way.

Handlers and Microtasks

JavaScript executed in the regular flow of a program is executed as a task, which is
to say that the JavaScript runtime has created a new execution context and executes
the code completely, exiting when finished. As an example, an onclick handler for a
button in a web page is executed as a task. When the button is clicked, a new task is
created and the onclick handler is executed. Once complete, the JavaScript runtime
waits for the next interaction to execute more code. Promise handlers, however, are
executed in a different way.

All promise handlers, whether fulfillment, rejection, or settlement, are executed as
microtasks inside of the JavaScript engine. Microtasks are queued and then executed
immediately after the currently running task has completed, before the JavaScript

1. Promise Basics 12

runtime becomes idle. Calling then(), catch(), or finally() tells a promise to queue
the specified microtasks once the promise is settled.

This is different than creating timers using setTimeout() or setInterval(), both
of which create new tasks to be executed at a later point in time. Queued promise
handlers will always execute before timers that are queued in the same task. You can
test this for yourself by using the global queueMicrotask() function, which is used
to create microtasks outside of promises:

1 setTimeout(() => {

2 console.log("timer");

3

4 queueMicrotask(() => {

5 console.log("microtask in timer");

6 });

7

8 }, 0);

9

10 queueMicrotask(() => {

11 console.log("microtask");

12 });

In this code, a timer is created with a delay of 0 milliseconds, and inside of that timer
a new microtask is created. Also, a microtask is created outside of the timer. When
this code executes, you will see the following output to the console:

1 microtask

2 timer

3 microtask in timer

Even though the timer is set for a delay of 0 milliseconds, the microtask executes
first, followed by the timer, followed by the microtask inside of the timer.

The most important thing to remember about microtasks, including all promise
handlers, is that they are executed as soon as possible once a task is complete.
This minimizes the amount of time between a promise settling and the reaction to
the settling, making promises suitable for situations where runtime performance is
important.

1. Promise Basics 13

Creating New (Unsettled) Promises

New promises are created using the Promise constructor. This constructor accepts a
single argument: a function called the executor, which contains the code to initialize
the promise. The executor is passed two functions named resolve() and reject()

as arguments. You call the resolve() function when the executor has finished
successfully to signal that the promise is resolved or the reject() function to indicate
that the operation has failed.

Here’s an example using the old XMLHttpRequest browser API:

1 // Browser example

2

3 function requestURL(url) {

4 return new Promise((resolve, reject) => {

5

6 const xhr = new XMLHttpRequest();

7

8 // assign event handlers

9 xhr.addEventListener("load", () => {

10 resolve({

11 status: xhr.status,

12 text: xhr.responseText

13 });

14 });

15

16 xhr.addEventListener("error", error => {

17 reject(error);

18 });

19

20 // send the request

21 xhr.open("get", url);

22 xhr.send();

23 });

24 }

25

1. Promise Basics 14

26 const promise = requestURL("books.json");

27

28 // listen for both fulfillment and rejection

29 promise.then(response => {

30 // fulfillment

31 console.log(response.status);

32 console.log(response.text);

33 }, reason => {

34 // rejection

35 console.error(reason.message);

36 });

In this example, the XMLHttpRequest call is wrapped in a promise. The load event
indicates when a request has completed successfully, and so the promise executor
calls resolve() in the event handler. Similarly, the error event indicates when the
request couldn’t be completed and so reject() is called in that event handler. You
can follow this same process (using resolve() and reject() in event handlers) for
converting event-based functionality into promise-based functionality.

One important aspect of executors is that they run immediately upon creation of the
promise. In the previous example, the xhr object is created, event handlers assigned,
and the call initiated before the promise is returned from requestURL(). When either
resolve() or reject() is called inside the executor, then the promise’s state and value
are immediately set, but all promise handlers (being microtasks) will not execute
until the current script job completes. For example, consider what happens if you
call resolve() immediately inside an executor, as in this code:

1 const promise = new Promise((resolve, reject) => {

2 console.log("Executor");

3 resolve(42);

4 });

5

6 promise.then(result => {

7 console.log(result);

8 });

9

10 console.log("Hi!");

1. Promise Basics 15

Here, the promise is resolved immediately without any delay, and then a fulfillment
handler is added using then() to output the result. Even though the promise is
already resolved when the fulfillment handler is added, the output will be as follows:

1 Executor

2 Hi!

3 42

The executor is run first, outputting "Executor" to the console. Next, the fulfillment
handler is assigned but is not executed immediately. Instead, a new microtask is
created to run after the current script job. That means console.log("Hi!") executes
before the fulfillment handler, which outputs 42 after the rest of the script has
completed.

A promise can only be resolved once, so if you call resolve() more than
once inside of an executor, every call after the first is ignored.

Executor Errors

If an error is thrown inside an executor, then the promise’s rejection handler is called.
For example:

1 const promise = new Promise((resolve, reject) => {

2 throw new Error("Uh oh!");

3 });

4

5 promise.catch(reason => {

6 console.log(reason.message); // "Uh oh!"

7 });

In this code, the executor intentionally throws an error. There is an implicit try-catch
inside every executor so that the error is caught and then passed to the rejection
handler. The previous example is equivalent to:

1. Promise Basics 16

1 const promise = new Promise((resolve, reject) => {

2 try {

3 throw new Error("Uh oh!");

4 } catch (ex) {

5 reject(ex);

6 }

7 });

8

9 promise.catch(reason => {

10 console.log(reason.message); // "Uh oh!"

11 });

The executor handles catching any thrown errors to simplify this common use
case, and just like other rejections, the JavaScript engine throws an error and stops
execution if no rejection handler is assigned.

Creating Settled Promises

The Promise constructor is the best way to create unsettled promises due to the
dynamic nature of what the promise executor does. But if you want a promise
to represent a previously computed value, then it doesn’t make sense to create an
executor that simply passes a value to the resolve() or reject() function. Instead,
there are two methods that create settled promises given a specific value.

Using Promise.resolve()

The Promise.resolve() method accepts a single argument and returns a promise in
the fulfilled state. That means you don’t have to supply an executor if you know the
value of the promise already. For example:

1. Promise Basics 17

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 console.log(value); // 42

5 });

This code creates a fulfilled promise so the fulfillment handler receives 42 as value.
As with other examples in this chapter, the fulfillment handler is executed as a
microtask after the current script job completes. If a rejection handler were added
to this promise, the rejection handler would never be called because the promise will
never be in the rejected state.

If you pass a promise to Promise.resolve(), then the function returns the same
promise that you passed in. For example:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.resolve(promise1);

3

4 console.log(promise1 === promise2); // true

Using Promise.reject()

You can also create rejected promises by using the Promise.reject() method. This
works like Promise.resolve() except the created promise is in the rejected state, as
follows:

1 const promise = Promise.reject(42);

2

3 promise.catch(reason => {

4 console.log(reason); // 42

5 });

Any additional rejection handlers added to this promise would be called, but
fulfillment handlers will not because the promise will never be in the fulfilled state.

1. Promise Basics 18

Non-Promise Thenables

Both Promise.resolve() and Promise.reject() also accept non-promise thenables
as arguments. When passed a non-promise thenable, these methods create a new
promise that is called after the then() function.

A non-promise thenable is created when an object has a then()method that accepts
a resolve and a reject argument, like this:

1 const thenable = {

2 then(resolve, reject) {

3 resolve(42);

4 }

5 };

The thenable object in this example has no characteristics associated with a promise
other than the then() method. You can call Promise.resolve() to convert thenable
into a fulfilled promise:

1 const thenable = {

2 then(resolve, reject) {

3 resolve(42);

4 }

5 };

6

7 const promise = Promise.resolve(thenable);

8 promise.then(value => {

9 console.log(value); // 42

10 });

In this example, Promise.resolve() calls thenable.then() so that a promise state
can be determined. The promise state for thenable is fulfilled because resolve(42)

is called inside the then() method. A new promise called promise is created in the
fulfilled state with the value passed from thenable (that is, 42), and the fulfillment
handler for promise receives 42 as the value.

The same process can be used with Promise.resolve() to create a rejected promise
from a thenable:

1. Promise Basics 19

1 const thenable = {

2 then(resolve, reject) {

3 reject(42);

4 }

5 };

6

7 const promise = Promise.resolve(thenable);

8 promise.catch(value => {

9 console.log(value); // 42

10 });

This example is similar to the last except that thenable is rejected. When
thenable.then() executes, a new promise is created in the rejected state with a value
of 42. That value is then passed to the rejection handler for promise.

Promise.resolve() and Promise.reject() work like this to allow you to easily
work with non-promise thenables. A lot of libraries used thenables prior to promises
being introduced in 2015, so the ability to convert thenables into formal promises
is important for backwards compatibility with previously existing libraries. When
you’re unsure if an object is a promise, passing the object through Promise.resolve()
or Promise.reject() (depending on your anticipated result) is the best way to find
out because promises just pass through unchanged.

Summary

A promise is a placeholder for a value that may be provided later as the result of some
asynchronous operation. Instead of assigning an event handler or passing a callback
into a function, you can use a promise to represent the result of an operation.

Promises have three states: pending, fulfilled, and rejected. A promise starts in a
pending (unsettled) state and becomes fulfilled on a successful execution or rejected
on a failure (fulfillment and rejection are settled states). In either case, handlers can
be added to indicate when a promise is settled. The then() method allows you to
assign a fulfillment and rejection handler; the catch() method allows you to assign
only a rejection handler; the finally() method allows you to assign a settlement

1. Promise Basics 20

handler that is always called regardless of the outcome. All promise handlers are run
as microtasks so they will not execute until the current script job is complete.

You can create new unsettled promises using the Promise constructor, which accepts
an executor function as its only argument. The executor function is passed resolve()
and reject() functions that you use to indicate the success or failure of the promise.
The executor runs immediately upon creation of the promise, unlike handlers, which
are run as microtasks. Any errors thrown in an executor are automatically caught
and passed to reject().

It’s possible to create settled promises using Promise.resolve() for fulfilled promises
and Promise.reject() for rejected promises. Each method will wrap its argument
in a promise (if it’s not a promise and not a non-promise thenable), create a new
promise (for non-promise thenables), or pass through any existing promise. These
methods are helpful when you are unsure if the value is a promise but want it to
behave like one.

While creating single promises is a useful and effective way to work with asyn-
chronous operations in JavaScript, promises allow interesting composition patterns
when chained together. In the next chapter, you’ll learn how promise handlers work
to create promise chains and why that’s a valuable capability.

2. Chaining Promises
To this point, promises may seem like little more than an incremental improvement
over using some combination of a callback and the setTimeout() function, but there
is much more to promises than meets the eye. More specifically, there are a number
of ways to chain promises together to accomplish more complex asynchronous
behavior.

Each call to then(), catch(), or finally() actually creates and returns another
promise. This second promise is settled only once the first has been fulfilled or
rejected. Consider this example:

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 console.log(value);

5 }).then(() => {

6 console.log("Finished");

7 });

The code outputs:

1 42

2 Finished

The call to promise.then() returns a second promise on which then() is called. The
second then() fulfillment handler is only called after the first promise has been
resolved. If you unchain this example, it looks like this:

2. Chaining Promises 22

1 const promise1 = Promise.resolve(42);

2

3 const promise2 = promise1.then(value => {

4 console.log(value);

5 });

6

7 promise2.then(() => {

8 console.log("Finished");

9 });

In this unchained version of the code, the result of promise1.then() is stored in
promise2, and then promise2.then() is called to add the final fulfillment handler.
The call to promise2.then() also returns a promise. This example just doesn’t use
that promise.

Catching Errors

Promise chaining allows you to catch errors that may occur in a fulfillment or
rejection handler from a previous promise. For example:

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 throw new Error("Oops!");

5 }).catch(reason => {

6 console.error(reason.message); // "Oops!"

7 });

In this code, the fulfillment handler for promise throws an error. The chained call
to the catch() method, which is on a second promise, is able to receive that error
through its rejection handler. The same is true if a rejection handler throws an error:

2. Chaining Promises 23

1 const promise = new Promise((resolve, reject) => {

2 throw new Error("Uh oh!");

3 });

4

5 promise.catch(reason => {

6 console.log(reason.message); // "Uh oh!"

7 throw new Error("Oops!");

8 }).catch(reason => {

9 console.error(reason.message); // "Oops!"

10 });

Here, the executor throws an error that triggers the promise’s rejection handler. That
handler then throws another error that is caught by the second promise’s rejection
handler. The chained promise calls are aware of errors in other promises in the chain.

You can use this ability to catch errors through a promise chain to effectively act like
a try-catch statement. Consider using fetch() to retrieve some data and wanting
to catch any errors that occur:

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 console.log(response.status);

5 }).catch(reason => {

6 console.error(reason.message);

7 });

This example will output the response status from the fetch() call if it succeeds
and will output the error message if the call fails. You can take this a step further
and handle status codes outside of the 200-299 range as errors by checking the
response.ok property (discussed in Chapter 1) and throwing an error if it is false,
as in this example:

2. Chaining Promises 24

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 if (response.ok) {

5 console.log(response.status);

6 } else {

7 throw new Error(`Unexpected status code: ${

8 response.status

9 } ${response.statusText}`);

10 }

11 }).catch(reason => {

12 console.error(reason.message);

13 });

The chained catch() call in this example creates a rejection handler that catches both
errors returned by fetch() and also any errors thrown in the fulfillment handler. So
instead of needing two different handles for catching the two different types of errors,
you can use one to handle all of the errors that may occur in the chain.

Always have a rejection handler at the end of a promise chain to ensure
that you can properly handle any errors that may occur.

Using finally() in Promise Chains

The finally() method behaves differently than either then() or catch() in that it
copies the state and value of the previous promise into its returned promise. That
means if the original promise is fulfilled with a value, then finally() returns a
promise that is fulfilled with the same value. For example:

2. Chaining Promises 25

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 console.log("Finally called.");

5 }).then(value => {

6 console.log(value); // 42

7 });

Here, the settlement handler can’t receive the fulfilled value from promise, so that
value is copied to a new promise that is returned from the method call. The new
promise is fulfilled with the value 42 (copied from promise) so the fulfillment handler
receives 42 as an argument. Keep in mind that even though the returned promise and
promise have the same value, they are not the same object, as you can see in this
example:

1 const promise1 = Promise.resolve(42);

2

3 const promise2 = promise1.finally(() => {

4 console.log("Finally called.");

5 });

6

7 promise2.then(value => {

8 console.log(value); // 42

9 });

10

11 console.log(promise1 === promise2); // false

In this code, the returned value from promise1.finally() is stored in promise2, at
which point you can determine that it is not the same object as promise1. The call to
finally() always copies the state and value from the original promise. That also
means that when finally() is called on a rejected promise, it in turn returns a
rejected promise, as in this example:

2. Chaining Promises 26

1 const promise = Promise.reject(43);

2

3 promise.finally(() => {

4 console.log("Finally called.");

5 }).catch(reason => {

6 console.error(reason); // 43

7 });

The promise promise in this example is rejected with a reason of 43. Once again,
the settlement handler cannot access this information as it is not passed in as an
argument, so instead it returns a new promise that is rejected for the same reason.
You can then use catch() to retrieve the reason.

The one exception to how finally() works is when an error is thrown inside of the
settlement handler or a rejected promise is returned. In this one case, the returned
promise from finally() does not maintain the state and value from the original
promise, and instead is rejected with the thrown error as the reason. Here’s an
example:

1 const promise1 = Promise.reject(43);

2

3 promise1.finally(() => {

4 throw 44;

5 }).catch(reason => {

6 console.error(reason); // 44

7 });

8

9 const promise2 = Promise.reject(43);

10

11 promise2.finally(() => {

12 return Promise.reject(44);

13 }).catch(reason => {

14 console.error(reason); // 44

15 });

Because the settlement handlers throw 44 or return Promise.reject(44) in this
example, the returned promise is rejected with the value of 44 and that is output

2. Chaining Promises 27

to the console instead of 43. The state and value of the original promise are lost as a
consequence of the error being thrown in the settlement handler.

In Chapter 1, you saw how a settlement handler can be used to toggle the loading
state of an application based on a call to fetch(). Rewriting that example using
promise chains, andmixing in some error handling from earlier in this chapter, here’s
a complete example:

1 const appElement = document.getElementById("app");

2 const promise = fetch("books.json");

3

4 appElement.classList.add("loading");

5

6 promise.then(response => {

7 if (response.ok) {

8 console.log(response.status);

9 } else {

10 throw new Error(`Unexpected status code: ${

11 response.status

12 } ${response.statusText}`);

13 }

14 }).finally(() => {

15 appElement.classList.remove("loading");

16 }).catch(reason => {

17 console.error(reason.message);

18 });

Unlike a try-catch statement, you don’t want finally() to be the last part of the
chain just in case it throws an error. So then() is called first, to handle the response
from fetch(), then finally() is added to the chain to trigger the UI change, and last
catch() adds the error handler for the entire chain. This is where settlement handlers
passing along the state of the previous promise is helpful: if the fulfillment handler
ends up throwing an error, the settlement handler will pass that rejection state along
so the rejection handler can access it.

2. Chaining Promises 28

Returning Values in Promise Chains

Another important aspect of promise chains is the ability to pass data from one
promise to the next. You’ve already seen that a value passed to the resolve() handler
inside an executor is passed to the fulfillment handler for that promise. You can
continue passing data along a chain by specifying a return value from the fulfillment
handler. For example:

1 const promise = Promise.resolve(42);

2

3 promise.then(value => {

4 console.log(value); // 42

5 return value + 1;

6 }).then(value => {

7 console.log(value); // 43

8 });

The fulfillment handler for promise returns value + 1when executed. Since value is
42 (from the executor), the fulfillment handler returns 43. That value is then passed
to the fulfillment handler of the second promise, which outputs it to the console.

You could do the same thing with the rejection handler. When a rejection handler is
called, it may return a value. If it does, that value is used to fulfill the next promise
in the chain, like this:

1 const promise = Promise.reject(42);

2

3 promise.catch(value => {

4 // rejection handler

5 console.error(value); // 42

6 return value + 1;

7 }).then(value => {

8 // fulfillment handler

9 console.log(value); // 43

10 });

2. Chaining Promises 29

Here, a rejected promise is created with a value of 42. That value is passed into the
rejection handler for the promise, where value + 1 is returned. Even though this
return value is coming from a rejection handler, it is still used in the fulfillment
handler of the next promise in the chain. The failure of one promise can allow
recovery of the entire chain if necessary.

Using finally(), however, results in a different behavior. Any value returned from
a settlement handler is ignored so that you can access the original promise’s value.
Here’s an example:

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 // settlement handler

5 return 43; // ignored!

6 }).then(value => {

7 // fulfillment handler

8 console.log(value); // 42

9 });

The value passed to the fulfillment handler is 42 and not 43. The return statement
in the settlement handler is ignored so that the original value can be retrieved using
then(). This is one of the consequences of finally() returning a promise whose
state and value are copied from the original.

Returning Promises in Promise Chains

Returning primitive values from promise handlers allows passing of data between
promises, but what if you return an object? If the object is a promise, then there’s an
extra step that’s taken to determine how to proceed. Consider the following example:

2. Chaining Promises 30

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.resolve(43);

3

4 promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 }).then(value => {

8 console.log(value); // 43

9 });

In this code, promise1 resolves to 42. The fulfillment handler for promise1 returns
promise2, a promise already in the resolved state. The second fulfillment handler
is called because promise2 has been fulfilled. If promise2 were rejected, a rejection
handler (if present) would be called instead of the second fulfillment handler.

The important thing to recognize about this pattern is that the second fulfillment
handler is not added to promise2, but rather to a third promise, making the previous
example equivalent to this:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.resolve(43);

3

4 const promise3 = promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 });

8

9 promise3.then(value => {

10 console.log(value); // 43

11 });

Here, it’s clear that the second fulfillment handler is attached to promise3 rather than
promise2. This is a subtle but important distinction, as the second fulfillment handler
will not be called if promise2 is rejected. For instance:

2. Chaining Promises 31

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.reject(43);

3

4 promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 }).then(value => {

8 console.log(value); // never called

9 });

In this example, the second fulfillment handler is never called because promise2 is
rejected. You could, however, attach a rejection handler instead:

1 const promise1 = Promise.resolve(42);

2 const promise2 = Promise.reject(43);

3

4 promise1.then(value => {

5 console.log(value); // 42

6 return promise2;

7 }).catch(value => {

8 console.error(value); // 43

9 });

Here, the rejection handler is called as a result of promise2 being rejected. The
rejected value 43 from promise2 is passed into that rejection handler.

Returning a promise from a fulfillment handler is helpful when an operation
requires more than one promise to execute to completion. For example, fetch()
requires a second promise to read the body of a response. To read a JSON body,
you’ll need to use response.json(), which returns another promise. Here’s how it
looks without using promise chaining:

1 const promise1 = fetch("books.json");

2

3 promise1.then(response => {

4

2. Chaining Promises 32

5 promise2 = response.json();

6 promise2.then(payload => {

7 console.log(payload);

8 }).catch(reason => {

9 console.error(reason.message);

10 });

11

12 }).catch(reason => {

13 console.error(reason.message);

14 });

This code requires two different rejection handlers to catch the potential errors
at two different steps of the process. Returning the second promise from the first
fulfillment handler simplifies the code:

1 const promise = fetch("books.json");

2

3 promise.then(response => {

4 return response.json();

5 }).then(payload => {

6 console.log(payload);

7 }).catch(reason => {

8 console.error(reason.message);

9 });

Here, the first fulfillment handler is called when a response is received and then
returns a promise to read the response body as JSON. The second fulfillment
handler is called when the body has been read and the payload is ready to be used.
You need only one rejection handler at the end of the promise chain to catch errors
that occur along the way.

Returning a promise from a settlement handler using finally() also exhibits some
different behavior than using then() or catch(). First, if you return a fulfilled
promise from a settlement handler, then that promise is ignored in favor of the value
from the original promise, as in this example:

2. Chaining Promises 33

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 return Promise.resolve(44);

5 }).then(value => {

6 console.log(value); // 42

7 });

In this example, the settlement handler returns a promise that is fulfilled with 44, but
the returned promise is fulfilled with the original promise’s value, which is 42.

However, if you return a rejected promise from a settlement handler, then the
returned promise adopts that reason and the returned promise is rejected, like this:

1 const promise = Promise.resolve(42);

2

3 promise.finally(() => {

4 return Promise.reject(43);

5 }).catch(reason => {

6 console.error(reason); // 43

7 });

This holds true even if the original promise is rejected, as in this example:

1 const promise = Promise.reject(43);

2

3 promise.finally(() => {

4 return Promise.reject(45);

5 }).catch(reason => {

6 console.log(reason); // 45

7 });

Returning a rejected promise from a settlement handler is functionally equivalent to
throwing an error: the returned promise is rejected with the specified reason.

2. Chaining Promises 34

Returning promises from fulfillment or rejection handlers doesn’t change when
the promise executors are executed. The first defined promise will run its executor
first; then the second promise executor will run, and so on. Returning promises
simply allows you to define additional responses to the promise results. You defer
the execution of fulfillment handlers by creating a new promise within a fulfillment
handler. For example:

1 const p1 = Promise.resolve(42);

2

3 p1.then(value => {

4 console.log(value); // 42

5

6 // create a new promise

7 const p2 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 resolve(43);

10 }, 500);

11 });

12

13 return p2;

14 }).then(value => {

15 console.log(value); // 43

16 });

In this example, a new promise is created within the fulfillment handler for p1.
That means the second fulfillment handler won’t execute until after p2 is fulfilled.
The executor for p2 is delayed by 500 milliseconds using setTimeout(), but more
realistically you might make a network or file system request. This pattern is useful
when you want to wait until a previous promise has been settled before starting a
new asynchronous operation.

2. Chaining Promises 35

Summary

Multiple promises can be chained together in a variety of ways to pass information
between them. Each call to then(), catch(), and finally() creates and returns a new
promise that is resolved when the preceding promise is settled. If the promise handler
returns a value, then that value becomes the value of the newly created promise from
then() and catch() (finally() ignores this value); if the promise handler throws an
error, then the error is caught and the returned newly created promise is rejected
using that error as the reason.

When one promise is rejected in a chain, the promises created from other chained
handlers are also rejected until the end of the chain is reached. Knowing this, it’s
recommended to attach a rejection handler at the end of each promise chain to ensure
that errors are handled correctly. Failing to catch a promise rejection will result in a
message being output to the console, an error being thrown, or both (depending on
the runtime environment).

You can return promises from handlers, and in that case, the promise returned from
the call to then() and catch() will settle to match the settlement state and value of
the promise returned from the handler (fulfilled promises returned from finally()

are ignored while rejected promises are honored). You can use this to your advantage
by delaying some operations until a promise is fulfilled, then initiating and returning
a second promise to continue using the same promise chain.

This chapter explored how to chain multiple promises together so they act more like
one promise. In this next chapter, you’ll learn how to work with multiple promises
acting in parallel.

3. Working with Multiple
Promises
Up to this point, each example in this book has dealt with responding to one promise
at a time. Sometimes, however, you’ll want to monitor the progress of multiple
promises in order to determine the next action. JavaScript provides several methods
that monitor multiple promises and respond to them in slightly different ways. All
of the methods discussed in this chapter allow multiple promises to be executed in
parallel and then responded to as a group rather than individually.

The Promise.all() Method

The Promise.all() method accepts a single argument, which is an iterable (such as
an array) of promises to monitor, and returns a promise that is resolved only when
every promise in the iterable is resolved. The returned promise is fulfilled when every
promise in the iterable is fulfilled, as in this example:

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = new Promise((resolve, reject) => {

4 resolve(43);

5 });

6

7 let promise3 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 resolve(44);

10 }, 100);

11 });

12

13 let promise4 = Promise.all([promise1, promise2, promise3]);

3. Working with Multiple Promises 37

14

15 promise4.then(value => {

16 console.log(Array.isArray(value)); // true

17 console.log(value[0]); // 42

18 console.log(value[1]); // 43

19 console.log(value[2]); // 44

20 });

Each promise here resolves with a number. The call to Promise.all() creates promise
promise4, which is ultimately fulfilled when promises promise1, promise2, and
promise3 are fulfilled. The result passed to the fulfillment handler for promise4 is
an array containing each resolved value: 42, 43, and 44. The values are stored in the
order the promises were passed to Promise.all(), so you can match promise results
to the promises that resolved to them.

If any promise passed to Promise.all() is rejected, the returned promise is immedi-
ately rejected without waiting for the other promises to complete:

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = Promise.reject(43);

4

5 let promise3 = new Promise((resolve, reject) => {

6 setTimeout(() => {

7 resolve(44);

8 }, 100);

9 });

10

11 let promise4 = Promise.all([promise1, promise2, promise3]);

12

13 promise4.catch(reason => {

14 console.log(Array.isArray(reason)); // false

15 console.log(reason); // 43

16 });

In this example, the second promise (promise2) is rejected with a value of 43. The
rejection handler for promise4 is called immediately without waiting for the first

3. Working with Multiple Promises 38

promise (promise1) or third promise (promise3) to finish executing. (They do still
finish executing; promise4 just doesn’t wait.)

The rejection handler always receives a single value rather than an array, and the
value is the rejection value from the promise that was rejected. In this case, the
rejection handler is passed 43 to reflect the rejection from promise2.

Any non-promise value in the iterable argument is passed to
Promise.resolve() to convert it into a promise.

When to Use Promise.all()

You’ll want to use Promise.all() in any situation where you are waiting for multiple
promises to fulfill, and any one failure should cause the entire operation to fail. Here
are some common use cases for Promise.all().

Processing Multiple Files Together

When using a server-side JavaScript runtime such as Node.js or Deno, you may need
to read from multiple files to work with data contained inside. In this situation, it’s
most efficient to read files in parallel and wait until they’ve all been read before
proceeding to process the data you’ve retrieved. Here’s an example that works in
Node.js:

1 import { readFile } from "node:fs/promises";

2

3 function readFiles(filenames) {

4 return Promise.all(

5 filenames.map(filename => readFile(filename, "utf8"))

6);

7 }

8

9 readFiles([

10 "file1.json",

11 "file2.json"

3. Working with Multiple Promises 39

12]).then(fileContents => {

13

14 // parse JSON data

15 const data = fileContents.map(

16 fileContent => JSON.parse(fileContent)

17);

18

19 // process as necessary

20 console.log(data);

21

22 }).catch(reason => {

23 console.error(reason.message);

24 });

This example uses the Node.js promises-based filesystem API to read multiple
files in parallel. The readFiles() function accepts an array of filenames to read
and then maps each filename to a promise created by the imported readFile()

function. The file is read as text (as indicated by the "utf8" encoding passed as
the second argument), and the results are available in the fulfillment handler as
the fileContents array, which contains the text of each filename. From that point,
the file contents are parsed as JSON into the data array and then passed to the
processData() function. This is a common way to process data across multiple
files because if any one file cannot be read or parsed, then the operation cannot
be completed correctly and should be stopped.

Calling Multiple Dependent Web Service APIs

Another common use case for Promise.all() is when calling multiple web service
APIs. This is especially common with REST APIs where each type of data associated
with an entity may have its own endpoints. For example, consider an application
where each user has both blog posts and albums, and you may need to gather all of
that information on the user’s profile. The code might look like this:

3. Working with Multiple Promises 40

1 const API_BASE = "https://jsonplaceholder.typicode.com";

2

3 function createError(response) {

4 return new Error(`Unexpected status code: ${

5 response.status

6 } ${response.statusText} for ${

7 response.url

8 }`);

9 }

10

11 function fetchUserData(userId) {

12

13 const urls = [

14 `${API_BASE}/users/${userId}/posts`,

15 `${API_BASE}/users/${userId}/albums`

16];

17

18 return Promise.all(urls.map(url => fetch(url)));

19 }

20

21 fetchUserData(1).then(responses => {

22 return Promise.all(

23 responses.map(

24 response => {

25 if (response.ok) {

26 return response.json();

27 } else {

28 return Promise.reject(

29 createError(response)

30);

31 }

32 }

33)

34);

35 }).then(([posts, albums]) => {

36

3. Working with Multiple Promises 41

37 // process your data as necessary

38 console.log(posts);

39 console.log(albums);

40

41 }).catch(reason => console.error(reason.message));

This example uses the JSONPlaceholder¹ service, which is a free fake API for testing
and prototyping. Given a particular user ID, JSONPlaceholder will generate fake data.
In this case, the code is using the /posts and /albums endpoints for each user. The
fetchUserData() function accepts a user ID and generates the URLs to call. Then the
URLs are mapped to the promise returned by each fetch() call. When the responses
are retrieved, another Promise.all() call is used to map each response to another
promise, either the JSON body if the response was in the 200-299 range or a rejected
promise otherwise (which will short-circuit the entire operation and call the rejection
handler). In the last settlement handler, the posts and albums data is available to be
processed.

Creating Artificial Delays

A less common scenario for Promise.all() is when you want to delay something
from happening too quickly. This is more likely to happen in a browser rather than
on the server-side, where you sometimes need a slight delay between a user action
and the response. For example, you may want to display a loading indicator when
fetching data from the server, but if the response is too fast, the user may not see
the loading spinner and therefore not know that the data on the screen is the most
recent. In such a situation, you can introduce an artificial delay, like this:

¹https://jsonplaceholder.typicode.com/

3. Working with Multiple Promises 42

1 const API_BASE = "https://jsonplaceholder.typicode.com";

2 const appElement = document.getElementById("app");

3

4 function createError(response) {

5 return new Error(`Unexpected status code: ${

6 response.status

7 } ${response.statusText} for ${

8 response.url

9 }`);

10 }

11

12 function delay(milliseconds) {

13 return new Promise(resolve => {

14 setTimeout(() => {

15 resolve();

16 }, milliseconds);

17 });

18 }

19

20 function fetchUserData(userId) {

21

22 appElement.classList.add("loading");

23

24 const urls = [

25 `${API_BASE}/users/${userId}/posts`,

26 `${API_BASE}/users/${userId}/albums`

27];

28

29 return Promise.all([

30 ...urls.map(url => fetch(url)),

31 delay(1500)

32]).then(results => {

33 // strip off the undefined result from delay()

34 return results.slice(0, results.length - 1);

35 });

36 }

3. Working with Multiple Promises 43

37

38 fetchUserData(1).then(responses => {

39 return Promise.all(

40 responses.map(

41 response => {

42 if (response.ok) {

43 return response.json();

44 } else {

45 return Promise.reject(

46 createError(response)

47);

48 }

49 }

50)

51);

52 }).then(([posts, albums]) => {

53

54 // process your data as necessary

55 console.log(posts);

56 console.log(albums);

57

58 }).finally(() => {

59 appElement.classList.remove("loading");

60 }).catch(reason => console.error(reason.message));

This code builds on the preceding example by introducing a delay into each fetch()

call. The delay() function returns a promise that resolves after a specified number of
milliseconds have passed. It does so by using the native setTimeout() function and
passing a callback function that calls resolve(). Note that there is no need to pass
any value to resolve() in this situation because there is no relevant data.

You could also pass resolve directly as the first argument to setTimeout();
however, some JavaScript runtimes pass an argument to the timeout
callback. For best compatibility across runtimes, it’s best to call resolve()
from inside of another function.

3. Working with Multiple Promises 44

The fetchUserData() function initiates theweb service requests for the specified user
ID. As in the example from the previous section, Promise.all() is used to monitor
multiple fetch() requests, but in this example, there is also a call to delay() included
in the array passed to Promise.all(). When the returned promise is fulfilled, the
fulfillment handler receives an array of all results, including undefined as the last
array element. Before returning from fetchUserData(), that last element is removed
so that the code calling fetchUserData() doesn’t need to be aware of the delay()

call at all. The CSS class loading is added to the application element in the DOM
to indicate that data is being retrieved and is later removed by a settlement handler
when a response is received.

You’ve just learned use cases where using Promise.all() is the best solution. But
what if you want your operation to continue even if one promise is rejected? That’s
where Promise.allSettled() is the better choice.

The Promise.allSettled() Method

The Promise.allSettled()method is a slight variation of Promise.all()where the
method waits until all promises in the specified iterable are settled, regardless of
whether they are fulfilled or rejected. The return value of Promise.allSettled() is
always a promise that is fulfilled with an array of result objects.

The result object for a fulfilled promise has two properties:

• status - always set to the string fulfilled

• value - the fulfillment value of the promise

For a rejected promise, there are also two properties on the result object:

• status - always set to the string rejected

• reason - the rejection value of the promise

You can use the returned array of result objects to determine the result of each
individual promise.

3. Working with Multiple Promises 45

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = Promise.reject(43);

4

5 let promise3 = new Promise((resolve, reject) => {

6 setTimeout(() => {

7 resolve(44);

8 }, 100);

9 });

10

11 let promise4 = Promise.allSettled([promise1, promise2, promise3]);

12

13 promise4.then(results => {

14 console.log(Array.isArray(results)); // true

15

16 console.log(results[0].status); // "fulfilled"

17 console.log(results[0].value); // 42

18

19 console.log(results[1].status); // "rejected"

20 console.log(results[1].reason); // 43

21

22 console.log(results[2].status); // "fulfilled"

23 console.log(results[2].value); // 44

24 });

Even though the second promise (promise2) is a rejected promise, the call to
Promise.allSettled() returns a fulfilled promise with an array of result objects. You
can then look through the result objects to determine the outcome of each promise.

When to Use Promise.allSettled()

The Promise.allSettled() method can be used in a lot of the same situations as
Promise.all(); however, it is best suited for when you want to ignore rejections,
handle rejections differently, or allow partial success. Here are some common use
cases for Promise.allSettled().

3. Working with Multiple Promises 46

Processing Multiple Files Separately

When discussing Promise.all(), you saw an example of working on multiple
files that were dependent on one another to succeed. There are also some cases
where working on multiple files separately means you don’t need to stop the entire
operation if one fails; you go ahead and complete the successful operations and then
log the failed ones to retry later. Here’s an example in Node.js:

1 import { readFile, writeFile } from "node:fs/promises";

2

3 // or any operation on the files

4 function transformText(text) {

5 return text.split("").reverse().join("");

6 }

7

8 function transformFiles(filenames) {

9 return Promise.allSettled(

10 filenames.map(filename =>

11 readFile(filename, "utf8")

12 .then(text => transformText(text))

13 .then(newText => writeFile(filename, newText))

14 .catch(reason => {

15 reason.filename = filename;

16 return Promise.reject(reason);

17 })

18)

19);

20 }

21

22 transformFiles([

23 "file1.txt",

24 "file2.txt"

25]).then(results => {

26

27 // get failed results

28 const failedResults = results.filter(

3. Working with Multiple Promises 47

29 result => result.status === "rejected"

30);

31

32 if (failedResults.length) {

33 console.error("Files not transformed:");

34 console.error("");

35

36 failedResults.forEach(failedResult => {

37 console.error(failedResult.reason.filename);

38 console.error(failedResult.reason.message);

39 console.error("");

40 });

41 } else {

42 console.log("All files transformed.");

43 }

44

45 });

This example reads in a series of files, reverses the order of the text in the files,
and then writes that text back to the original files (you can, of course, replace
transformText()with whatever operation youwould prefer). The transformFiles()
function accepts an array of filenames and reads the contents of the file, transforms
the text, andwrites the transformed text back to the file. The promise chain represents
each step in the process, and the rejection handler adds a filename property to any
rejection reason to make it easier to interpret the results after the fact.

When the operation on all of the files is completed, the results are filtered to find
any files where the transform did not complete successfully and then outputs those
results to the console. In a production system you would likely feed the failed results
into a monitoring system or a queue to try the transformation again.

Calling Multiple Independent Web Service APIs

Another example from the Promise.all() section was calling multiple web service
APIs where you wanted all of the requests to succeed. If you don’t need all of the
requests to succeed, then you can use Promise.allSettled() instead. Going back to

3. Working with Multiple Promises 48

that previous example, if it’s possible to display the user profile page, even if some
of the data is missing, then use Promise.allSettled() instead of Promise.all() to
avoid showing an error to the user. For example:

1 const API_BASE = "https://jsonplaceholder.typicode.com";

2

3 function fetchUserData(userId) {

4

5 const urls = [

6 `${API_BASE}/users/${userId}/posts`,

7 `${API_BASE}/users/${userId}/albums`,

8 `${API_BASE}/users/${userId}/extras`

9];

10

11 return Promise.allSettled(urls.map(url => fetch(url)))

12 .then(results => results.map(result => result.value));

13 }

14

15 fetchUserData(1).then(responses => {

16 return Promise.all(

17 responses.map(

18 response => {

19 if (response?.ok) {

20 return response.json();

21 }

22 }

23)

24);

25 }).then(([posts, albums, extras]) => {

26

27 // process your data as necessary

28 if (posts) {

29 console.log("Posts");

30 console.log(posts);

31 }

32

3. Working with Multiple Promises 49

33 if (albums) {

34 console.log("Albums");

35 console.log(albums);

36 }

37

38 if (extras) {

39 console.log("Extras");

40 console.log(extras);

41 }

42

43 }).catch(reason => console.error(reason.message));

In this version of the example, the fetchUserData() function uses
Promise.allSettled() instead of Promise.all() to ensure that rejections can be
ignored. This example also calls a third endpoint, /users/{userId}/extras, which
doesn’t exist and will return a 404 (for demonstration purposes). Once all requests
have completed, a fulfillment handler maps each result to its value property, which
ensures that any rejected promises are mapped to undefined and fulfilled promises
are mapped to the response object returned from fetch().

Because response may be undefined, you need to check that response is a truthy
before checking the ok property. The JSON body of each valid response is then read,
and the last fulfillment handler reads that data. There is no guarantee that each of
the requested data will be there (extras will be undefined in this example) so you
need to check that each value is present before processing it.

Waiting for Animations to Finish

In a web page, elements can be animated in a number of different ways simulta-
neously. You could, for instance, animate the location of an element up from the
bottom of the page while also animating the width and height to grow the element
into view. It’s helpful in these situations to wait for all animations to complete before
making the next modification to the element or page. In his article, Building a toast
component², Adam Argyle explained a basic way to track when the animations of a
DOM element are complete. I’ve rewritten the code for clarity here:

²https://web.dev/building-a-toast-component/

3. Working with Multiple Promises 50

1 function waitForAnimations(element) {

2 return Promise.allSettled(

3 element.getAnimations().map(animation => animation.finished)

4);

5 }

6

7 const toasterElement = document.getElementById("toaster");

8 waitForAnimations(toasterElement)

9 .then(() => console.log("Toaster is done."));

In this case, you don’t really care if any of the animations fail along the way,
nor do you care about receiving any fulfilled values from the animations, so
Promise.allSettled() is a more appropriate option than Promise.all(). The
getAnimations() method returns an array of animation objects, each of which has
a finished property containing a promise that is resolved when the animation is
complete. By passing each of these promises into Promise.allSettled(), you will
be notified when all animations are complete. Because Promise.allSettled() never
returns a rejected promise, you can just attach a fulfillment handler and not be
worried about any uncaught rejection errors.

The Promise.any() Method

The Promise.any()method also accepts an iterable of promises and returns a fulfilled
promisewhen any of the passed-in promises are fulfilled. The operation short-circuits
as soon as one of the promises is fulfilled. (This is the opposite of Promise.all(),
where the operation short-circuits as soon as one promise is rejected.) Here’s an
example:

3. Working with Multiple Promises 51

1 let promise1 = Promise.reject(43);

2

3 let promise2 = Promise.resolve(42);

4

5 let promise3 = new Promise((resolve, reject) => {

6 setTimeout(() => {

7 resolve(44);

8 }, 100);

9 });

10

11 let promise4 = Promise.any([promise1, promise2, promise3]);

12

13 promise4.then(value => console.log(value)); // 42

Even though the first promise (promise1) in this example is rejected, the call to
Promise.any() succeeds because the second promise (promise2) is fulfilled. The
result of the third promise (promise3) is discarded.

If all of the promises passed to Promise.any() are rejected, then the returned promise
is rejected with an AggregateError. An AggregateError is an error that represents
multiple errors stored in an errors property. For example:

1 let promise1 = Promise.reject(43);

2

3 let promise2 = new Promise((resolve, reject) => {

4 reject(44);

5 });

6

7 let promise3 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 reject(45);

10 }, 100);

11 });

12

13 let promise4 = Promise.any([promise1, promise2, promise3]);

14

3. Working with Multiple Promises 52

15 promise4.catch(reason => {

16 // Runtime dependent error message

17 console.log(reason.message);

18

19 // output rejection values

20 console.log(reason.errors[0]); // 43

21 console.log(reason.errors[1]); // 44

22 console.log(reason.errors[2]); // 45

23 });

Here, Promise.any() receives promises that are not fulfilled, and so the returned
promise is rejected with an AggregateError. You can inspect the errors property,
which is an array, to retrieve the rejection values from each promise.

When to Use Promise.any()

The Promise.any()method is best used in situations where you want any one of the
promises to fulfill and you don’t care how many others reject unless they all reject.
Here are some situations where you might want to use Promise.any().

Executing Hedged Requests

As defined in The Tail at Scale³, a hedged request is one where the client makes
requests to multiple servers and accepts the response from the first that replies. This
is helpful in situations where the client needs the lowest latency possible, and there
are server resources devoted to managing the extra load and deduplicating responses.
Here’s an example:

³https://www.barroso.org/publications/TheTailAtScale.pdf

3. Working with Multiple Promises 53

1 const HOSTS = [

2 "api1.example.com",

3 "api2.example.com"

4];

5

6 function hedgedFetch(endpoint) {

7 return Promise.any(

8 HOSTS.map(hostname => fetch(`https://${hostname}${endpoint}`))

9);

10 }

11

12 hedgedFetch("/transactions")

13 .then(transactions => console.log(transations))

14 .catch(reason => console.error(reason.message));

This example keeps an array of hosts that should be called for each hedged request.
The hedgedFetch() function creates an array of fetch() requests based on those host-
names and passes that array to Promise.any(). To the consumer of hedgedFetch(),
it looks as if just one request is made even though multiple are happening behind the
scenes. This allows the consumer to use just one fulfillment handler and one rejection
handler to handle the result. If any one of the requests fails, the consumer is never
aware; the rejection handler is only called if all requests fail.

Using the Fastest Response in a Service Worker

Web pages that use serviceworkers often have their choice of where to load data from:
the network or from the cache. In some cases, a network request might actually be
faster than loading from cache, and so you may want to use Promise.any() to choose
the faster of the responses. Here’s some code that illustrates this pattern inside of a
service worker:

3. Working with Multiple Promises 54

1 self.addEventListener("fetch", event => {

2

3 // get cached response

4 const cachedResponse = caches.match(event.request);

5

6 // fetch new response

7 const fetchedResponse = fetch(event.request.url);

8

9 // respond with the best option

10 event.respondWith(

11 Promise.any([

12 fetchedResponse.catch(() => cachedResponse),

13 cachedResponse,

14])

15 .then(response => response ?? fetchedResponse)

16 .catch(() => {})

17);

18

19 });

The fetch event listener allows you to listen for network requests and intercept
the responses. This service worker example uses a fetch event listener to read both
from the cache (using caches.match()) and from the network (using fetch()). The
call to caches.match() returns a promise that is always fulfilled, either with the
matching response object or with undefined if the request isn’t in the cache. The
event.respondWith() method expects a promise to be passed, so this event handler
passes the result of Promise.any().

Two promises are passed to Promise.any(): the fetched response with a rejection
handler that defaults back to the cached response and the cached response itself. In
this way, the cached response is returned both if there is a cache hit that fulfills
first and if the fetched response is rejected. The fulfillment handler then makes
sure there is a valid response (remember, response might be undefined if the cache
responds first with a miss). The rejection handler doesn’t do anything because there
is no fallback in this situation. Both the fetched response and the cached response
were rejected, so the error is silently ignored to allow the browser to use its default
behavior.

3. Working with Multiple Promises 55

While Promise.any() short-circuits after the first fulfilled promise, you may also
want to short-circuit the operation based on the first settled promise regardless of the
outcome. For that case, you can use Promise.race() (discussed later in this chapter).

The Promise.race() Method

The Promise.race() method provides a slightly different take on monitoring mul-
tiple promises. This method also accepts an iterable of promises to monitor and
returns a promise, but the returned promise is settled as soon as the first promise
is settled. Instead of waiting for all promises to be resolved like the Promise.all()

method or short-circuiting only for the first resolved promise like Promise.any(),
the Promise.race() method returns an appropriate promise as soon as any promise
in the array is settled. For example:

1 let promise1 = Promise.resolve(42);

2

3 let promise2 = new Promise((resolve, reject) => {

4 resolve(43);

5 });

6

7 let promise3 = new Promise((resolve, reject) => {

8 setTimeout(() => {

9 resolve(44);

10 }, 100);

11 });

12

13 let promise4 = Promise.race([promise1, promise2, promise3]);

14

15 promise4.then(value => console.log(value)); // 42

In this code, the first promise (promise1) is created as a fulfilled promise while the
others schedule jobs. The fulfillment handler for promise4 is then called with the
value of 42 and ignores the other promises. The promises passed to Promise.race()

are truly in a race to see which is settled first. If the first promise to settle is fulfilled,
then the returned promise is fulfilled; if the first promise to settle is rejected, then
the returned promise is rejected. Here’s an example with a rejection:

3. Working with Multiple Promises 56

1 let promise1 = new Promise((resolve, reject) => {

2 setTimeout(() => {

3 resolve(42);

4 }, 100);

5 });

6

7 let promise2 = new Promise((resolve, reject) => {

8 reject(43);

9 });

10

11 let promise3 = new Promise((resolve, reject) => {

12 setTimeout(() => {

13 resolve(44);

14 }, 50);

15 });

16

17 let promise4 = Promise.race([promise1, promise2, promise3]);

18

19 promise4.catch(reason => console.log(reason)); // 43

Here, both promise1 and promise3 use setTimeout() to delay promise fulfillment.
The result is that promise4 is rejected because promise2 is rejected before either
promise1 or promise3 is resolved. Even though promise1 and promise3 are eventually
fulfilled, those results are ignored because they occur after promise2 is rejected.

When to Use Promise.race()

The Promise.race() method is best used in situations where you want to be
able to short-circuit the completion of a number of different promises. Unlike
Promise.any(), where you specifically want one of the promises to succeed and only
care if all promises fail, with Promise.race() you want to know even if one promise
fails as long as it fails before any other promise fulfills. Here are some situations
where you may want to use Promise.race().

3. Working with Multiple Promises 57

Establishing a Timeout for an Operation

While the fetch() function has a lot of helpful functionality, one thing it doesn’t
do is manage a timeout for a given request; a request will happily hang until the
request completes one way or another. You can easily create a wrapper method to
add a timeout to any request by using Promise.race():

1 function timeout(milliseconds) {

2 return new Promise((resolve, reject) => {

3 setTimeout(() => {

4 reject(new Error("Request timed out."));

5 }, milliseconds);

6 });

7 }

8

9 function fetchWithTimeout(...args) {

10 return Promise.race([

11 fetch(...args),

12 timeout(5000)

13]);

14 }

15

16 const API_URL = "https://jsonplaceholder.typicode.com/users";

17

18 fetchWithTimeout(API_URL)

19 .then(response => response.json())

20 .then(users => console.log(users))

21 .catch(reason => console.error(reason.message));

The timeout() function is similar to the delay() function created earlier in this
chapter except that it calls reject() after a delay rather than resolve(). In this
case, the delay represents an error condition as you want to be informed when
a request has taken longer than expected (5000 milliseconds in this example). The
fetchWithTimeout() function then calls fetch() along with timeout() in an array
that is passed to Promise.race(). If the call to fetch() takes longer than the timeout,
the returned promise is rejected so you can handle the failure appropriately.

3. Working with Multiple Promises 58

Keep in mind that even though fetchWithTimeout()will reject if a request
takes longer than the specified timeout, the request will not be cancelled.
It will continue waiting for a response behind-the-scenes even though the
response will be ignored.

Summary

For times when you want to monitor and respond to multiple promises at the same
time, JavaScript provides several methods. Each method behaves slightly differently,
but all allow you to run promises in parallel and respond to them as a group:

• Promise.all() - the returned promise is fulfilled when all of the promises are
fulfilled, and the returned promise is rejected when any promise is rejected.

• Promise.allSettled() - the returned promise is always fulfilled with an array
of results from the promise, and the returned promise is never rejected.

• Promise.any() - the returned promise is fulfilled when the first promise is
fulfilled, and the returned promise is rejected when all of the promises are
rejected.

• Promise.race() - the returned promise is fulfilled when the first promise to
settle is fulfilled, and the returned promise is rejected when the first promise to
settle is rejected.

Each of these methods is appropriate for different use cases, and it’s up to you to
decide which is appropriate in any situation.

4. Async Functions and Await
Expressions
JavaScript promises were designed to be a low-level utility that could be used behind-
the-scenes by higher-level language features. Async functions are just such a higher-
level language feature that makes programming with promises more similar to
programming without promises. Instead of worry about tracking promises and their
various handlers, async functions abstract away the promises. The end result is code
that follows a familiar top-down sequence.

Before getting into the details of how async functions work, it helps to understand
how they are defined.

Defining Async Functions

Async functions can be used anywhere synchronous functions can be used. In most
cases, all you need to do is add the async keyword before any function or method
definition to make it asynchronous. Here are some examples:

1 // async function declaration

2 async function doSomething() {

3 // body

4 }

5

6 // async arrow function

7 const doSomethingToo = async () => {

8 // body

9 };

10

11 // async arrow function

4. Async Functions and Await Expressions 60

12 const doSomethingElse = async a => {

13 // body

14 };

15

16 // async object method

17 const object = {

18 async doSomething() {

19 // body

20 }

21 };

22

23 // async class method

24 class MyClass {

25 async doSomething() {

26 // body

27 }

28 }

The async keyword indicates that the following function or method should be made
asynchronous. It’s important for the JavaScript engine to know ahead of time if a
function is asynchronous because it behaves differently than a synchronous function.

What Makes Async Functions Different

Async functions are different from synchronous functions in four ways:

1. The return value is always a promise
2. Thrown errors are promise rejections
3. The await expression can be used
4. The for-await-of loop can be used

These four aspects of async functions make them quite different from synchronous
functions, so it’s worth going through each point in more detail.

4. Async Functions and Await Expressions 61

The Return Value Is Always a Promise

You can use the return operator in async functions the same as synchronous
functions. The difference is that async functions always return a promise regardless
of the type of value you specify with return. If you return a number, for example,
that number is wrapped in a promise:

1 async function getMeaningOfLife() {

2 return 42;

3 }

4

5 const result = getMeaningOfLife();

6 console.log(result instanceof Promise); // true

7 console.log(typeof result === "number"); // false

8

9 result.then(value => {

10 console.log(value); // 42

11 });

In this code, the getMeaningOfLife() async function returns the number 42, but the
return value is actually a fulfilled promise. You can then attach a fulfillment handler
to retrieve the value. Effectively, async functions call Promise.resolve() behind-the-
scenes to ensure a promise is always returned.

If you pass a promise to return inside of an async function, then that promise is
not passed through directly. Instead, the promise state and value are copied to a new
promise and returned. Here’s an example:

4. Async Functions and Await Expressions 62

1 const promise = Promise.resolve(42);

2

3 async function getMeaningOfLife() {

4 return promise;

5 }

6

7 const result = getMeaningOfLife();

8 console.log(result === promise); // false

9 result.then(value => {

10 console.log(value); // 42

11 });

Here, result is not the same promise object as promise, but it does have all of the
same internal state and so still resolves to 42.

If you don’t specify a return value for an async function, then the return value is a
promise that resolves to undefined. For example:

1 async function doSomething() {

2 // no return value

3 }

4

5 const result = doSomething();

6 console.log(result instanceof Promise); // true

7 result.then(value => {

8 console.log(value); // undefined

9 });

The bottom line is no matter what you do inside an async function, it will always
return a promise. That is also the case when an error is thrown.

Thrown Errors Are Promise Rejections

When an error is thrown in an async function, a rejected promise is returned instead
of throwing the error outside the function. That means you cannot catch errors from
async functions using try-catch. For example, the following will not trap the error:

4. Async Functions and Await Expressions 63

1 async function throwError() {

2 throw new Error("Oh no!");

3 }

4

5 try {

6 throwError();

7 console.log("Didn't catch error");

8 } catch (ex) {

9 // never called

10 console.log("Caught error");

11 }

In this example, the try-catch statement doesn’t catch the error thrown by
throwError() because a rejected promise is returned. To catch the error, you need to
provide a rejection handler, like this:

1 async function throwError() {

2 throw new Error("Oh no!");

3 }

4

5 throwError().catch(reason => {

6 console.log("Caught error:", reason.message);

7 });

Here, the rejection handler is assigned using catch(), and the error results in a
message being output to the console.

The JavaScript engine goes through a lot of trouble to ensure that async functions
always return promises so you have a consistent way to work with the return value.
That brings us to the third way that async functions are different from synchronous
functions: the await expression.

Using Await Expressions

The await expression is designed to make working with promises simple. Instead of
manually assigning fulfillment and rejection handlers, any promise used in an await

4. Async Functions and Await Expressions 64

expression behaves more like code in a synchronous function: the expression returns
the fulfilled value of a promise when it succeeds and throws the rejection value when
the promise fails. That allows you to easily assign the result of an await expression to
a variable and catch any rejections using a try-catch statement. Here’s an example
using the fetch() API (available in web browsers and Deno) without await:

1 function retrieveJsonData(url) {

2 return fetch(url)

3 .then(response => {

4 if (response.ok) {

5 return response.json();

6 } else {

7 throw new Error(`Unexpected status code: ${

8 response.status

9 } ${response.statusText}`);

10 }

11 })

12 .catch(reason => console.error(reason.message));

13 }

The retrieveJsonData() function returns a promise that resolves to the JSON data
in the response from the call to fetch(). There is also a rejection handler to print out
any error messages. Here’s how you can rewrite this function as an async function
that uses await:

1 async function retrieveJsonData(url) {

2

3 try {

4 const response = await fetch(url);

5 if (response.ok) {

6 return await response.json();

7 } else {

8 throw new Error(`Unexpected status code: ${

9 response.status

10 } ${response.statusText}`);

11 }

4. Async Functions and Await Expressions 65

12 } catch (error) {

13 console.error(error.message);

14 }

15 }

In this rewritten version of retrieveJsonData(), the call to await fetch(url)

handles defining fulfillment and rejection handlers for the returned promise. The
variable response is assigned the fulfillment value of that promise (if successful),
and rejection throws an error that is caught by the try-catch statement. The function
still returns a promise that resolves to the JSON data, but it does so by returning the
fulfillment value of response.json() (another promise). If a rejection is triggered in
response.json(), then that is also thrown as an error and caught in the try-catch

statement.

You may be wondering why not return response.json() directly without await if
it is a promise? For example:

1 async function retrieveJsonData(url) {

2

3 try {

4 const response = await fetch(url);

5 if (response.ok) {

6 return response.json();

7 } else {

8 throw new Error(`Unexpected status code: ${

9 response.status

10 } ${response.statusText}`);

11 }

12 } catch (error) {

13 console.error(error.message);

14 }

15 }

This will work the same as the preceding example when response.json() succeeds;
when response.json() fails, however, that rejection will not be thrown as an error
and therefore will not be caught with the try-catch in this function. It’s the await
expression that causes rejections to be thrown as errors, so if you omit await, the

4. Async Functions and Await Expressions 66

promise rejection will only be caught by a rejection handler. In this example, the
rejection handler would have to be added by the code calling this function, like
this:

1 async function retrieveJsonData(url) {

2

3 try {

4 const response = await fetch(url);

5 if (response.ok) {

6 return response.json();

7 } else {

8 throw new Error(`Unexpected status code: ${

9 response.status

10 } ${response.statusText}`);

11 }

12 } catch (error) {

13 console.error(error.message);

14 }

15 }

16

17 retrieveJsonData("https://api.example.com/users")

18 .then(data => doSomething(data))

19 .catch(reason => console.error(reason.message));

There are valid use cases for both scenarios, somewhere youwant to catch the error
inside of the async function and some where you want the error to flow outside
the function.

Using Await Expressions with Non-Promises

You can also use await with non-promise values because the value is always passed
through Promise.resolve(). That means promises are passed through directly,
non-promise thenables are resolved to promises, and other values are wrapped in
promises. For example:

4. Async Functions and Await Expressions 67

1 async function getMeaningOfLife() {

2 return await 42;

3 };

4

5 getMeaningOfLife().then(value => console.log(value));

The getMeaningOfLife() function in this code returns a promise that is fulfilled with
the value 42. You can achieve the same functionality without an async function by
rewriting the previous example as follows:

1 function getMeaningOfLife() {

2 return Promise.resolve(42);

3 };

4

5 getMeaningOfLife().then(value => console.log(value));

The ability of await to handle non-promise values means that you aren’t penalized
if you guess incorrectly about the value being used.

Using Await Expressions with Multiple Promises

Even though await expressions operate on a single promise, you can take advantage
of the built-in promise methods to effectively operate on multiple promises. For
example, if you’d like to wait for every promise in an array to be fulfilled, you can
use the Promise.all() method with an await:

1 async function doSomething() {

2

3 try {

4 return await Promise.all([

5 promise1,

6 promise2,

7 promise3

8]);

9 } catch (error) {

4. Async Functions and Await Expressions 68

10 console.error(error.message);

11 }

12 }

In this code, await is used on the result of Promise.all() to cause the function to
wait until either all of the promises have been fulfilled or one of them is rejected (in
which case an error is thrown). The three promises are free to be fulfilled in parallel
while the function waits. Here’s an example of reading multiple files in Node.js:

1 import { readFile } from "node:fs/promises";

2

3 async function readFiles(filenames) {

4 const fileContents = await Promise.all(

5 filenames.map(filename => readFile(filename, "utf8"))

6);

7

8 return fileContents.map(

9 fileContent => JSON.parse(fileContent)

10);

11 }

12

13 readFiles([

14 "file1.json",

15 "file2.json"

16]).then(data => {

17

18 // process as necessary

19 console.log(data);

20

21 }).catch(reason => {

22 console.error(reason.message);

23 });

The readFiles() async function uses awaitwith Promise.all() to wait for all of the
files to be read. The file contents can then be parsed as JSON to return the data in
the most appropriate format for processing.

4. Async Functions and Await Expressions 69

Of course, you can also use await with Promise.allSettled(), Promise.any(),
Promise.race(), or any other function that returns a promise.

Using the for-await-of Loop

Another special syntax enabled inside async functions is the for-await-of loop,
which allows you to retrieve values from an iterable or an async iterable. An iterable
is an object with a Symbol.iteratormethod that returns an iterator; an async iterable
is an object with a Symbol.asyncIterator method that returns an iterator whose
values are always promises. The for-await-of loop calls Promise.resolve() on each
value returned from an iterable and then waits for each promise to resolve before
continuing to the next iteration of the loop.

The most often used iterables in JavaScript are arrays, and so you can use an array
of promises with a for-await-of loop to process promises in sequence, as in this
example:

1 const promise1 = Promise.resolve(1);

2 const promise2 = Promise.resolve(2);

3 const promise3 = Promise.resolve(3);

4

5 for await (const value of [promise1, promise2, promise3]) {

6 console.log(value);

7 }

This example processes promise1, promise2, and promise3 in that order. Even though
these are settled promises, the for-await-of loop works on unsettled promises as
well. And because the for-await-of loop always calls Promise.resolve() on any
value retrieved from an iterable, you can use it directly on arrays, like this:

4. Async Functions and Await Expressions 70

1 for await (const value of [1, 2, 3]) {

2 console.log(value);

3 }

Even though there are no promises in the array in this example, the for-await-of

loop will still work.

The most often used async iterables in Node.js are ReadStream objects. A ReadStream

object is used to periodically read data from a source where all of the data may not
be available. For network requests, reading large files, or event streams, ReadStream
objects are a convenient way to work with such data. Here’s an example:

1 import fs from "node:fs";

2

3 async function readCompleteTextStream(readable) {

4 readable.setEncoding("utf8");

5

6 let data = "";

7 for await (const chunk of readable) {

8 data += chunk;

9 }

10

11 return data;

12 }

13

14 const stream = fs.createReadStream("data.txt");

15 readCompleteTextStream(stream)

16 .then(text => console.log(text));

The readCompleteTextStream() function accepts a ReadStream object called readable
as a parameter. The first step to reading a text file is to set the encoding to "utf8"

using the setEncoding() method. Then, a for-await-of loop iterates over the data
read from readable. If the file is short, then there may only be one chunk of
data; if the file is long, then there will likely be multiple chunks of data. Using
the for-await-of loop allows you to not worry about the number of chunks being
returned.

4. Async Functions and Await Expressions 71

Similar to the await expression, a for-await-of loop throws an error if any of the
promises returned from the async iterable are rejected. You can catch that error with
a try-catch statement inside of the async function, such as:

1 import fs from "node:fs";

2

3 async function readCompleteTextStream(readable) {

4 readable.setEncoding("utf8");

5

6 try {

7 let data = "";

8 for await (const chunk of readable) {

9 data += chunk;

10 }

11 return data;

12 } catch (error) {

13 console.error(error.message);

14 }

15 }

16

17 const stream = fs.createReadStream("data.txt");

18 readCompleteTextStream(stream)

19 .then(text => console.log(text));

In this example, the first rejected promise in the for-await-of loop causes an error to
be thrown. The try-catch statement can then catch the error and log it to the console.
Without the try-catch statement, a rejected promise in the for-await-of loop will
be caught and returned as a rejected promise from the readCompleteTextStream()

function.

Top-Level Await Expressions

You can also use await at the top level of a JavaScript module outside of an async
function. Essentially, a JavaScript module acts as an async function wrapped around
the entire module by default. This allows you to call promise-based functions directly,
such as using the import() function:

4. Async Functions and Await Expressions 72

1 // static import

2 import something from "./file.js";

3

4 // dynamic import

5 const filename = "./another-file.js";

6 const somethingElse = await import(filename);

Using top-level await, you can load modules dynamically alongside the statically
loaded modules. (Dynamically loaded modules allow you to construct the module
specifier dynamically, as well, which is not possible with static import.) This example
uses both a static import and a dynamic import to illustrate the difference.

When the JavaScript engine encounters a top-level await, the JavaScript module
execution is paused until the promise is settled. If the parent module of the paused
module has static imports to process then those can continue even while the sibling
module using top-level await is paused. The order in which the sibling modules are
loaded cannot be guaranteed in this situation, but that order should not matter in
most situations.

Top-level await expressions cannot be used in JavaScript scripts. In order
to use top-level await, you must load your JavaScript code using import or
<script type="module">.

Summary

Async functions allow you to use promises without manually assigning fulfillment
and rejection handlers. You can turn any function into an async function by adding
the async keyword before the function definition.

The return value of an async function is always a promise. If you return a promise
from the async function, then it is duplicated and returned to the call site; if you
return a non-promise value, then the value is resolved to a promise and returned to
the call site.

Errors thrown inside an async function are caught and returned as a rejected promise.
Due to this behavior, you cannot catch errors originating in an async function using
try-catch; instead, you need to assign a rejection handler to the returned promise.

4. Async Functions and Await Expressions 73

Async functions enable two special types of syntax: the await expression and the
for-await-of loop. The await expression is used to automatically assign fulfillment
and rejection handlers to a promise such that the fulfillment value becomes the return
value of the await expression and a rejection causes an error to be thrown. Similarly,
the for-await-of loop operates on an async iterable and allows the use of promises
instead of a loop. The for-await-of loop waits for each promise returned from the
async iterable to fulfill before going on to the next promise. If a promise from the
async iterable is rejected, then an error is thrown.

You can use top-level await expressions outside of async functions at the top level of
JavaScript modules. This capability is not available in scripts.

5. Unhandled Rejection
Tracking
In the first generation of promises, a rejected promise without a rejection handler
would silently fail. Many considered this the biggest flaw in the specification as
it was the only part of the JavaScript language that didn’t make errors apparent.
Later, JavaScript runtimes instituted console warnings to at least notify developers
when unhandled rejections occurred, and some decided to throw errors. Eventually,
unhandled rejection tracking was added into the JavaScript specification.

Detecting Unhandled Rejections

Determining whether a promise rejection was handled isn’t straightforward due to
the nature of promises. For instance, consider this example:

1 let rejected = Promise.reject(42);

2

3 // at this point, rejected is unhandled

4

5 setTimeout(() => {

6

7 rejected.catch(value => {

8 // now rejected has been handled

9 console.log(value);

10 });

11

12 }, 5000);

You can call then() or catch() at any point and have them work correctly regardless
of whether the promise is settled or not, making it hard to know precisely when a

5. Unhandled Rejection Tracking 75

promise is going to be handled. In this case, the promise is rejected immediately but
isn’t handled until later.

The JavaScript specification considers a promise to be handled if the promise’s then()
method has been called (which includes catch() and finally(), both of which call
then() behind the scenes). It actually doesn’t matter if you’ve attached a fulfillment
handler, a rejection handler, or neither, so long as then() was called. Each call to
then() creates a new promise which then becomes responsible for dealing with any
fulfillment or rejection. Consider this example:

1 const promise1 = new Promise((resolve, reject) => {

2 reject(43);

3 });

4

5 const promise2 = promise1.then(value => {

6 console.log(value);

7 });

Here, promise1 is considered handled because then() is called and a fulfillment
handler is attached. When promise1 is rejected, that rejection is passed on to
promise2, which is not handled. A runtime would report the unhandled rejection
from promise2 and disregard promise1. So, the runtime isn’t really tracking all
unhandled rejections, but rather, it’s tracking whether the last promise in a chain
has any handlers attached.

While the JavaScript specification does indicate how to track unhandled rejections,
it doesn’t specify what a runtime should do when an unhandled rejection occurs.
Those details are left to the runtimes themselves as the appropriate reaction may be
different depending on where the runtime is executed.

Web Browser Unhandled Rejection Tracking

Unhandled rejection tracking for web browsers is defined in the HTML specification.
At the core of unhandled rejection tracking are two events that are emitted by the
globalThis object:

https://html.spec.whatwg.org/multipage/webappapis.html#unhandled-promise-rejections

5. Unhandled Rejection Tracking 76

• unhandledrejection: Emitted when a promise is rejected and no rejection
handler is called within one turn of the event loop.

• rejectionhandled: Emitted when a promise is rejected and a rejection handler
is called after one turn of the event loop.

These two events are designed to be used together to accurately detect unhandled
promise rejections. Here’s an example showing when each event is triggered:

1 const rejected = Promise.reject(new Error("Oops!"));

2

3 setTimeout(() => {

4

5 // "rejectionhandled" triggered here

6 rejected.catch(

7 reason => console.error(reason.message) // "Oops!"

8);

9

10 }, 500);

11

12 // "unhandledrejection" triggered at this point

In this code, rejected is a rejected promise that has no rejection handler attached
initially. The unhandledrejection event is emitted once the script task has completed
to let you know that a rejected promise exists without a rejection handler. The
timer adds a rejection handler after a delay of 500 milliseconds, at which point the
rejectionhandled event is emitted to let you know that a promise previously flagged
as having an unhandled rejection has now been handled. That means you need to
track the promises triggering these events in order to accurately detect problems.

Both unhandledrejection and rejectionhandled generate an event object contain-
ing the following properties:

• type: The name of the event ("unhandledrejection" or "rejectionhandled")
• promise: The promise object that was rejected
• reason: The rejection value from the promise

With this information you can track which promises don’t have rejection handlers,
as in this example:

5. Unhandled Rejection Tracking 77

1 const rejected = Promise.reject(new Error("Oops!"));

2

3 setTimeout(() => {

4

5 // "rejectionhandled" triggered here

6 rejected.catch(

7 reason => console.error(reason.message) // "Oops!"

8);

9

10 }, 500);

11

12 globalThis.onunhandledrejection = event => {

13 console.log(event.type); // "unhandledrejection"

14 console.log(event.reason.message); // "Oops!"

15 console.log(rejected === event.promise); // true

16 };

17

18 globalThis.onrejectionhandled = event => {

19 console.log(event.type); // "rejectionhandled"

20 console.log(event.reason.message); // "Oops!"

21 console.log(rejected === event.promise); // true

22 };

23

24 // "unhandledrejection" triggered at this point

This code assigns both event handlers using the DOM Level 0 notation of
onunhandledrejection and onrejectionhandled. (You can also use addEventListener()
in both cases if you prefer.) Each event handler receives an event object containing
information about the rejected promise. The type, promise, and reason properties
are all available in both event handlers.

Even though this section focuses on unhandled rejection tracking in web browsers,
Deno has decided to implement the HTML specification’s unhandled rejection
tracking as part of its web platform compatibility. Everything discussed in this
section, therefore, also applies to Deno even when not explicitly mentioned.

5. Unhandled Rejection Tracking 78

At the time of this writing, Deno has implemented unhandledrejection

and rejectionhandled events for workers but not for the main thread. This
issue is actively being worked on and should be resolved soon.

Reporting Unhandled Rejections in Web Browsers

While the unhandledrejection and rejectionhandled events are helpful in identi-
fying potential problems, they are not useful for tracking problems in production
without some addition functionality. You don’t necessarily want to log every
unhandled rejection because a rejection handler may be added later, so it makes sense
to specify a timeframe within which you expect all promise rejections to be handled.
For instance, you might want to log every rejection that hasn’t been handled within
a minute. To do so, you need to track promises that triggered unhandledrejection

but did not trigger rejectionhandled. Here’s one approach to doing that:

1 const possiblyUnhandledRejections = new Map();

2

3 // when a rejection is unhandled, add it to the map

4 globalThis.onunhandledrejection = event => {

5 possiblyUnhandledRejections.set(event.promise, event.reason);

6 };

7

8 // when a rejection is handled, remove it from the map

9 globalThis.onrejectionhandled = event => {

10 possiblyUnhandledRejections.delete(event.promise);

11 };

12

13 setInterval(() => {

14

15 possiblyUnhandledRejections.forEach((reason, promise) => {

16

17 console.error("Unhandled rejection");

18 console.error(promise);

19 console.error(reason.message ? reason.message : reason);

5. Unhandled Rejection Tracking 79

20

21 // do something to handle these rejections

22 });

23

24 possiblyUnhandledRejections.clear();

25

26 }, 60000);

This is a simple unhandled rejection tracker. It uses a map to store promises and their
rejection reasons. Each promise is a key, and the promise’s reason is the associated
value. Each time unhandledrejection is emitted, the promise and its rejection reason
are added to the map. Each time rejectionhandled is emitted, the handled promise
is removed from the map. As a result, possiblyUnhandledRejections grows and
shrinks as events are emitted. The setInterval() call periodically checks the list of
possible unhandled rejections and outputs the information to the console (in reality,
you’ll probably want to do something else to log or otherwise handle the rejection).
A map is used in this example instead of a weak map because you need to inspect
the map periodically to see which promises are present, and that’s not possible with
a weak map.

Preventing Console Warnings in Web Browsers

By default, browsers and Deno will output uncaught rejections to the console, and
that doesn’t change because you’re listening for the uncaughtrejection event. You
can prevent the console warning by calling event.preventDefault() inside the
onuncaughtrejection event handler, as in this example:

1 globalThis.onunhandledrejection = event => {

2

3 // prevents the console warning

4 event.preventDefault();

5 };

This example prevents the console warning but doesn’t affect the relationship with
the rejectionhandled event, which will still be emitted if the promise that triggered
unhandledrejection is later assigned a rejection handler.

5. Unhandled Rejection Tracking 80

Handling Unhandled Rejections in Web Browsers

Another quirk in the relationship between the unhandledrejection and
rejectionhandled events is that you can prevent the rejectionhandled event from
firing by adding a rejection handler inside of the onunhandledrejection event
handler, like this:

1 globalThis.onunhandledrejection = ({ promise, reason }) => {

2 promise.catch(() => {}); // handle the rejection

3 };

4

5 // this will never be called

6 globalThis.onrejectionhandled = ({ promise }) => {

7 console.log(promise);

8 };

In this case, the rejectionhandled event isn’t triggered because a rejection handler
is added before it’s time for that event. The browser assumes that you know the
promise is now handled and so there is no reason to trigger the rejectionhandled

event.

A console warning will still be output even after handling a rejection inside
of onunhandledrejection unless you also call event.preventDefault()
inside of onunhandledrejection.

Node.js Unhandled Rejection Tracking

Node.js tracks unhandled promise rejections in a similar, but not the same, way as
browsers. There are two events in Node.js, but these are emitted on the process

object and have different capitalization than the browser events:

• unhandledRejection: Emitted when a promise is rejected and no rejection
handler is called within one turn of the event loop.

5. Unhandled Rejection Tracking 81

• rejectionHandled: Emitted when a promise is rejected and a rejection handler
is called after one turn of the event loop.

Also unlike the browser events, these events do not receive an event object. The
unhandledRejection event handler is passed the rejection reason and the promise
that was rejected as arguments. The following code shows unhandledRejection in
action:

1 const rejected = Promise.reject(new Error("Oops!"));

2

3 process.on("unhandledRejection", (reason, promise) => {

4 console.log(reason.message); // "Oops!"

5 console.log(rejected === promise); // true

6 });

This example creates a rejected promise with an error object and listens for the
unhandledRejection event. The event handler receives the error object as the first
argument and the promise as the second.

The rejectionHandled event handler has only one argument, which is the promise
that was rejected. For example:

1 const rejected = Promise.reject(new Error("Oops!"));

2

3 setTimeout(() => {

4

5 // "rejectionhandled" triggered here

6 rejected.catch(

7 reason => console.error(reason.message) // "Oops!"

8);

9

10 }, 500);

11

12 process.on("rejectionHandled", promise => {

13 console.log(rejected === promise); // true

14 });

5. Unhandled Rejection Tracking 82

Here, the rejectionHandled event is emitted when the rejection handler is finally
called. Note that, unlike in the browser, the reason for the rejection isn’t passed into
the rejectionHandled event handler.

By default, Node.js throws an error when an unhandled promise rejection occurs
unless there is an event handler for unhandledRejection. You can change how
Node.js handles uncaught promise rejections by using the --unhandled-rejection
command-line option.

• --unhandled-rejection=throw (default) means that the unhandledRejection
event is emitted. If there is no event handler specified for unhandledRejection,
then the rejection reason is thrown as an error that can be caught by using
an uncaughtException event handler. If no uncaughtException handler is
specified, then the Node.js process exits with process.exitCode set to 1.

• --unhandled-rejection=strictmeans that the unhandledRejection event is
not emitted. Instead, the rejection reason is thrown as that can be caught us-
ing an uncaughtException event handler. Any unhandledRejection handlers
are not executed.

• --unhandled-rejection=warn means that the unhandledRejection event is
emitted and a warning will always be output to the console regardless if any
unhandledRejection handlers are defined. There is no change to the process
exit code.

• --unhandled-rejection=warn-with-error-code acts the same as

--unhandled-rejection=warn except that when the process exits it does so with
process.exitCode set to 1 if no other exit code is specified.

• --unhandled-rejection=none completely ignores any unhandled promise
rejections. There is no console output and the process continues executing
JavaScript.

For production deployments, the --unhandled-rejection=strict is recommended
as a promise rejection may leave the application in an unstable state in a manner
that is similar to an uncaught error.

5. Unhandled Rejection Tracking 83

Reporting Unhandled Rejections in Node.js

To properly track potentially unhandled rejections, use the unhandledRejection and
rejectionHandled events to keep a list of potentially unhandled rejections (similar to
the web browser approach). Here is a Node.js-specific version of the simple rejection
tracker described earlier in this chapter for web browsers:

1 const possiblyUnhandledRejections = new Map();

2

3 // when a rejection is unhandled, add it to the map

4 process.on("unhandledRejection", (reason, promise) => {

5 possiblyUnhandledRejections.set(promise, reason);

6 });

7

8 process.on("rejectionHandled", promise => {

9 possiblyUnhandledRejections.delete(promise);

10 });

11

12 setInterval(() => {

13

14 possiblyUnhandledRejections.forEach((reason, promise) => {

15

16 console.error("Unhandled rejection");

17 console.error(promise);

18 console.error(reason.message ? reason.message : reason);

19

20 // do something to handle these rejections

21 });

22

23 possiblyUnhandledRejections.clear();

24

25 }, 60000);

The algorithm for this rejection tracker is the same as in the web browser example;
it just uses the Node.js-specific functionality instead. Otherwise,
possiblyUnhandledRejections grows and shrinks as events are called and setInterval()

5. Unhandled Rejection Tracking 84

is used to periodically check the list of possible unhandled rejections and output the
information to the console.

Summary

All JavaScript runtimes track unhandled promise rejections in some way. Web
browsers and Deno implement the algorithm specified in the HTML specification
while Node.js implements its own solution. Both solutions rely on two events: one
that is emitted when an untracked promise rejection occurs and one that is emitted
if a previously untracked promise rejection has a rejection handler added.

The unhandledrejection event is emitted on the globalThis object in web browsers
and Deno whenever an unhandled rejection is detected. Event handlers for
unhandledrejection receive an event object containing the type of event, the
promise that was rejected, and the reason for the promise rejection. The rejectionhandled
event is emitted when a previously untracked promise rejection has a rejection
handler added. Event handlers for rejectionhandled also receive an event object
that also contains the event type, the promise, and the rejection reason.

Node.js also uses two events, but they occur on the process object and have slightly
different names: unhandledRejection and rejectionHandled. Event handlers for
unhandledRejection receive the rejection reason and the promise as arguments;
event handlers for rejectionHandled receive just the promise.

Both approaches allow you to implement unhandled rejection reporting for your
application by listening for both events and tracking the promises they provide in a
separate location. You can then periodically check the list of promises to report them
into your logging or reporting system.

Final Thoughts
When promises were added into the JavaScript language in 2015, they were a source
of controversy and the topic of many thinkpieces opining whether this was the right
way to address the asynchronous future of JavaScript. After several years, the dust
has settled and promises have won many over, especially with the introduction of
async functions in 2017. All new asynchronous JavaScript APIs are built to make use
of promises, so understanding how to work with promises is an important part of
any JavaScript-focused job.

I hope you’ve enjoyed this exploration of JavaScript promises.

Download the Extras

You can download companion materials for this book from https://bit.ly/promises-
extras. The extras include:

1. A promises cheat sheet
2. All of the examples from the book
3. Frequently asked questions about promises

Support the Author

It takes a lot of time and effort to create a book like this. If you’d like to support my
work, and get free copies of future e-books, please visit https://bit.ly/support-nzakas.

Help and Support

If you have any questions or comments about this book, please email books@humanwhocodes.com.
Be sure to mention the title of this book in the subject line.

https://bit.ly/promises-extras
https://bit.ly/promises-extras
https://bit.ly/support-nzakas

Final Thoughts 86

Follow the Author

You can follow Nicholas C. Zakas on the following sites:

• Blog: humanwhocodes.com
• Twitter:@slicknet, @humanwhocodes
• GitHub:@nzakas, @humanwhocodes
• Instagram:@nzakas, @humanwhocodes

Reach out and say hi!

https://humanwhocodes.com/
https://twitter.com/slicknet
https://twitter.com/humanwhocodes
https://github.com/nzakas
https://github.com/humanwhocodes
https://instagram.com/nzakas
https://instagram.com/humanwhocodes

	Table of Contents
	Introduction
	About This Book
	Acknowledgments
	About the Author
	Disclaimer

	1. Promise Basics
	The Promise Lifecycle
	Creating New (Unsettled) Promises
	Creating Settled Promises
	Summary

	2. Chaining Promises
	Catching Errors
	Using finally() in Promise Chains
	Returning Values in Promise Chains
	Returning Promises in Promise Chains
	Summary

	3. Working with Multiple Promises
	The Promise.all() Method
	The Promise.allSettled() Method
	The Promise.any() Method
	The Promise.race() Method
	Summary

	4. Async Functions and Await Expressions
	Defining Async Functions
	What Makes Async Functions Different
	Summary

	5. Unhandled Rejection Tracking
	Detecting Unhandled Rejections
	Web Browser Unhandled Rejection Tracking
	Node.js Unhandled Rejection Tracking
	Summary

	Final Thoughts
	Download the Extras
	Support the Author
	Help and Support
	Follow the Author

